First, second, and third change of rings theorems for Gorenstein homological dimensions
نویسندگان
چکیده
In this paper, we investigate the change of rings theorems for the Gorenstein dimensions over arbitrary rings. Namely, by the use of the notion of strongly Gorenstein modules, we extend the well-known first, second, and third change of rings theorems for the classical projective and injective dimensions to the Gorenstein projective and injective dimensions, respectively. Each of the results established in this paper for the Gorenstein projective dimension is a generalization of a G-dimension of a finitely generated module M over a noetherian ring R.
منابع مشابه
First, second, and third change of rings theorems for the Gorenstein homological dimensions
Motivated by their impact on homological algebra, the change of rings results have been the subject of several interesting works in Gorenstein homological algebra over Noetherian rings. In this paper, we investigate the change of rings theorems for the Gorenstein dimensions over arbitrary rings. Namely, by the use of the notion of strongly Gorenstein modules, we extend the well-known first, sec...
متن کاملGorenstein homological dimensions with respect to a semi-dualizing module over group rings
Let R be a commutative noetherian ring and Γ a finite group. In this paper,we study Gorenstein homological dimensions of modules with respect to a semi-dualizing module over the group ring . It is shown that Gorenstein homological dimensions of an -RΓ module M with respect to a semi-dualizing module, are equal over R and RΓ .
متن کاملCOHEN-MACAULAY HOMOLOGICAL DIMENSIONS WITH RESPECT TO AMALGAMATED DUPLICATION
In this paper we use "ring changed'' Gorenstein homologicaldimensions to define Cohen-Macaulay injective, projective and flatdimensions. For doing this we use the amalgamated duplication of thebase ring with semi-dualizing ideals. Among other results, we prove that finiteness of these new dimensions characterizes Cohen-Macaulay rings with dualizing ideals.
متن کاملGorenstein Homological Dimensions of Commutative Rings
The classical global and weak dimensions of rings play an important role in the theory of rings and have a great impact on homological and commutative algebra. In this paper, we define and study the Gorenstein homological dimensions of commutative rings (Gorenstein projective, injective, and flat dimensions of rings) which introduce a new theory similar to the one of the classical homological d...
متن کاملGlobal Gorenstein Dimensions of Polynomial Rings and of Direct Products of Rings
In this paper, we extend the well-known Hilbert’s syzygy theorem to the Gorenstein homological dimensions of rings. Also, we study the Gorenstein homological dimensions of direct products of rings. Our results generate examples of non-Noetherian rings of finite Gorenstein dimensions and infinite classical weak dimension.
متن کامل